Integrale gerek var mi bilmiyorum? Gerci boyle sounca neye gerek var da denilebilir, bunu cevaplayamam, o nedenle, integral varsa vardir.
Soru: $f(x,y)=2\bigg(\sqrt{\frac{3x}{y}}+\sqrt{\frac{5y}{x}}\bigg)$ fonksiyonunun $x,y>0$ iken minimum degeri. (Zaten $x$ negatif iken $y$ de negatif olacagindan ve simetriden dolayi, aslinda tum tanim araligindaki minimum degerini soruyor, zaten soru boyle olsaydi da sadece pozitif kisma indirgemek akillica oludu.)
Burdan sonrasi $x,y$ gore turev alip analiz etmek. Bu kisim uzun ama kolay. Okuyucuya kalsin.
Bu soruda degerleri yaklastirmak guzel: (sebep?) Eger $\frac{3x}{y}=\frac{5y}{x}$ olacak sekilde $x,y$ degerine bakarsak $f(x,y)=4\sqrt[4]{15}$ yapar. Bu da minimum degerle ortusur.