Kuantum mekaniksel sistem olarak $N$ elektronlu (yerleri $x_i$), $K$ çekirdekli (yerleri $R_i$), çekirdek kütleleri $(M_1,...,M_K)$ ve yükleri $(Z_1,...,Z_K)=:\underline{Z}$ olan bir molekülü inceleyelim (ya da $K$'yı içeren terimleri yazmazsak bir atomu):
Çekirdeklerin Hilbert uzayı için $\bigotimes_{k=1}^{K} L^{2}(\mathbb{R}_{R_k}^{3})$ ve elektronlar için, spinleri nedeniyle $\bigotimes^{N}\left (L^{2}(R^{3})\right)$ yerine $\bigotimes^{N}L^{2}(R^{3};\mathbb{C}^{2})$ 'yi ve de fermiyon olarak Pauli prensibine tabi oldukları için yine $L^{2}(R^{3};\mathbb{C}^{2}))$ $L^{2}(R^{3};\mathbb{C}^{2}))$ yerine $N$ kere antisimetrik tensör çarpımı $\bigwedge_{i=1}^{N}L^{2}(\mathbb{R}^{3};\mathbb{C}^{2})$'yi alıyoruz. Sonuç olarak toplam Hilbert uzayı $\mathcal{H}:=\bigotimes_{k=1}^{K}L^{2}(\mathbb{R}^{3}_{R_k})\otimes\bigwedge_{i=1}^{N}L^{2}(\mathbb{R}^{3};\mathbb{C}^{2})$'dır. Hamiltonyen ise şöyle tanımlansın:
$H_{N,\underline{Z}}:C_0^{\infty}({\mathbb{R}^{3K})}\otimes C_0^{\infty}({\mathbb{R}^{3N};\mathbb{C}^{2N}})\rightarrow \mathcal{H}$
$\psi\mapsto H_{N,\underline{Z}}(\psi):=\left(\displaystyle\sum_{k=1}^{K}T_k+\sum_{i=1}^{N}t_i+V_C\right)\psi$
Burada $T_k:=-\frac{\hbar^{2}}{M_k}\triangle_{R_K}$ k. çekirdeğin kinetik enerji işlemcisi,$t_i:=-\frac{\hbar^{2}}{2m_e}\triangle_{x_i}$ i. elektronun kinetik enerji işlemcisi ve
$V_C(\psi(x_1,...,x_N;R_1,...,R_N)):=$
$\frac{1}{4\pi \epsilon_0}\left(-\displaystyle\sum_{k=1}^{K}\sum_{i=1}^{N}\frac{Z_k e }{|x_i-R_k|}+\displaystyle\sum_{1\leq i<j\leq N} \frac{e^{2}}{|x_i-x_j|}+\displaystyle\displaystyle\sum_{1\leq k<l\leq K}\frac{Z_k Z_l} {|R_k-R_l|}\right)$ Coulomb potensiyali işlemcisidir ($\hbar$ Planck sabiti, $e$ elektron yükü, $m_e$ elektron kütlesi, $\epsilon_0$ elektriksel alan sabiti).
Soru 1: Bu Hamiltonyen işlemcisi sınırlı mı sınırsız mı? Bir gözlenebilir (bkz. ilgili yanıt) tanımlar mı ya da nasıl tanımlayabilir? Herhalükârda biz uygun bölgeyi $\mathcal{B}$ olarak adlandıralım:) Hesaplama yapmadan sadece fonksiyonel analiz bilgisi kullanarak sistem hakkında birşey söyleyebilirmiyiz?
Soru 2: $\psi\in \mathcal{B}$ için zamandan bağımsız Schrödinger denklemini $H_{N,\underline{Z}}\psi =E\psi$ çözün.
Not: Stone'nun tek parametreli üniter gruplar hakkındaki teoremini kullanarak $H_{N,\underline{Z}}$ üzerinden zaman değişkeni $t$ belirlenir.
Soru 3: $\psi\in \mathcal{B}$ için zamana bağımlı Schrödinger denklemini $i\hbar \partial_t \psi=H\psi$ çözün.
Soru 4: İncelediğimiz Schrödinger teorisi bağlamında çekirdeklerle elektronlar hangi durumda ve neden bir araya gelmekte direnir?
Not: Soruları bu halleriyle tam çözemezseniz lütfen neden çözemediğinizi belirtin ve(ya) molekülün çekirdeklerini sabit kabul edip ($\mathcal{H}:=\bigwedge_{i=1}^{N}L^{2}(\mathbb{R}^{3};\mathbb{C}^{2})$, $\ H_{N,\underline{Z}}(\psi):=\displaystyle\sum_{i=1}^{N}t_i+\frac{1}{4\pi \epsilon_0}\left(-\sum_{k=1}^{K}\sum_{i=1}^{N}\frac{Z_k e }{|x_i-R_k|}+\displaystyle\sum_{1\leq i<j\leq N} \frac{e^{2}}{|x_i-x_j|}\right) $) bir de öyle deneyin. Yoksa sadece taban enerjisini $E_t^{N,\underline{Z}}:=\text{inf}\sigma_{H_{N,\underline{Z}}}$ (bir $T$ işlemcisinin izgesi genelde $\sigma_T$ olarak gösterilir) bulmaya çalışın. Eğer bu da olmazsa taban enerjisi için bir alt sınır tahmin edin veya daha özel bir durumu inceleyin (örn. hidrojen atomu, helyum atomu).