Erwin Schrödinger "Kuantum mekaniğinin günümüzdeki durumu" Naturwissenschaften 23, 807-812 (1935) doi:10.1007/BF01491891 makalesinde Kopenhag yorumunun sorunlarını makroskopik nesnelere uygulamak için bu düşünce deneyini kurgulamıştır:
Bir kedi çok az miktarda radyoaktif madde, bir Geiger sayacı ve de zehirli gaz haznesi içeren düzenekle çelik bir odaya hapsedilmiştir. Radyoaktif maddeyi yaklaşık olarak belli bir zaman zarfında %50 olasılıkla ayrışmış olacak olan duraysız atom çekirdeği olarak varsayalım. Ayrışma düzenekteki Geiger sayacı tarafından algılandığında kediyi öldürecek zehirli gaz odaya salınıversin.
Kuantum mekaniksel olarak atom çekirdeğinin sözü edilen sürenin sonundaki durumunu $\vert {\psi} \rangle\in \mathcal{H}^{atom}$ ( = en basit haliyle $\mathcal{H}^{atom}$ Hilbert uzayında bir birim vektörü çarpı bir karmaşık sayıyla gösterilen ışın) -bir gözlemci ölçüm yapana dek- ayrışan $\vert {\Large ⚇} \rangle$ ve daha ayrışmayan $\vert {\Large ⚙} \rangle$ atom çekirdeği özdurumlarının eşit olasılıklı üstdüşümüyle betimleyebiliriz
$\vert {\Large ⚛} \rangle=\frac{1}{\sqrt{2}}(\vert {\Large ⚇} \rangle +\vert {\Large ⚙} \rangle).$
Önemli bir nokta, buradaki durumların ayrışma büyüklüğü dışında atom çekirdeğinin gözlenebilen (örn. yeri, devinirliği), gözlenebilinemeyen bütün büyüklüklerine dair bilgileri barındırmasıdır. Bizi ilgilendiren büyüklük atomun ayrışıp ayrışmadığı olduğu için durumunu sadece bunla gösteriyoruz. Gözlenebilirler durumlarla aynı Hilbert uzayı üzerindeki özeşlenik operatörler olarak tanımlanırlar.
Bu adımdan sonrası Kopenhagen yorumuna göre herşey üç farklı şekilde gelişebilir:
1) Kedi bir gözlemcidir ve $\vert {\Large ⚛} \rangle$'yi bir özdurumuna izdüşürür.
Ölçme işlemini bu örnekle tanımlamış olalım: ayrışma özelliği $\Large ⚛$ bir gözlenebilir, $\psi:=\vert {\Large ⚛}\rangle$ $\mathcal{H}^{atom}$'de bir durum, $]a,b[\subset\mathbb{R}$, $P_{]a,b[}$ $\Large ⚛$'nın ${]a,b[}$ üzerine izgesel izdüşümü olsun. O zaman, $<\psi,P_{]a,b[}\psi>$$\Large ⚛$ gözlenebilirinin ölçümünün olasılığıdır ve $\psi$ durumundaki bir sistem $]a,b[$ aralığında bir ölçüm değeri verir. ${\Large ⚛}(\psi)$ işlemine de ölçüm denir.
2) Kedi de kuantum mekaniksel bir sistemdir. Yani eğer $\vert kedi \rangle\in \mathcal{H}^{kedi}$ kedinin durumu, $\vert dirikedi \rangle$ kedinin hala yaşadığı ve $\vert { ölükedi} \rangle$ da ölmüş olduğu özdurumlarsa,
$\vert {kedi} \rangle=\frac{1}{\sqrt{2}}(\vert { dirikedi}\rangle+\vert { ölükedi} \rangle).$
Schrödinger (gözlemci) odanın kapağını açması atom çekirdeği ve kedinin tensör çarpımıyla biraraya gelmiş durumu $\vert {\Large ⚛}\rangle \otimes \vert {kedi \rangle}\in\mathcal{H}^{atom}\otimes \mathcal{H}^{kedi} $ özdurumlarından birine izdüşürür. Eğer örn. $\vert {adam}\rangle\otimes \vert { dirikedi}\rangle$ durumu olanaksız kabul ediliyorsa, $\mathcal{H}^{atom}\otimes \mathcal{H}^{kedi}$ önceden uygun bir Hilbert uzayına indirgenmelidir (=operatörlerin bölge tanımlarının fark yaratması).
3) Herşey kuantum mekanikseldir. Schrödinger'in durumu (artık özdurumları açıklamıyorum):
$\vert { adam }\rangle\in \mathcal{H}^{Schrödinger}:=lin\{ \vert{ mutluadam }\rangle,\vert {mutsuzadam }\rangle\}$ ve ölçüm yapılmadan sistemin durumu
$\vert {\Large ⚛}\rangle \otimes \vert { kedi \rangle}\otimes \vert { adam }\rangle\in \mathcal{H}^{atom}\otimes \mathcal{H}^{kedi}\otimes \mathcal{H}^{Schrödinger}$'dir.
Bu her üç seçenek için de sonuç (tanımlara bağlı) aynı olabilir, Kopenhag yorumundaki (yukarıda yazılanlar farklı yorumlanabilir) algısal sorun ölçüm yapılmadan önce bir şeyin aynı anda birden çok durumda olmasıdır.
Ama bütün bu biçimsellik sadece Schrödinger'in kedisine özgü olamayıp, aslında tüm kuantum mekaniğinin temelidir. Matematikte, günümüz fonksiyonel analizin olduğu yere gelmesi dili olan kuantum mekaniğinin sayesindedir, ayrıca ilginç kısmi türevsel denklemlerin bulunmasına da katkı sağlamıştır. Matematiksel fizikte bu örnekle ilgili genel olarak tek cisim Schrödinger operatörleriyle çalışmalar yapılmaktadır.Konu başlıkları olarak sıralarsak:
-İzgesel analiz, özfonksiyonların özellikleri, özdeğer istatistikleri
-Zaman evrimi
-Saçılma kuramı
-Yarıklasik analiz
Bu arada tabi ki bir kedinin kuatum mekaniksel bir sistem olarak görülemeyeceğini biliyoruz:) Yani yanlış.