Tanım: Bir $x\in\mathbb{Z}$ için tamdeğer $\lfloor x\rfloor:=\text{mak}\{m\in\mathbb{Z}\vert m\leq x\}$ olarak tanımlanır.
Tanım: $m,n,\mathbb{N}$, $M(m\times n,C)$ hücreleri $C$ cisminin elemanı olan $(m\times n)$ matrislerinin kümesi olsun. $A\in M(n\times n,C)$'nın eğer bir tersi yoksa $A$'ya tekil matris denir (aksi takdirde tekil olmayan).
Sav: Her bir $A\in M(m\times n,C)$ matrisini $C^{n}$ ve $C^{m}$'nin standart tabanları $\mathfrak{C}_n$ ve $\mathfrak{C}_m$'yi seçtiğimiz anda $(M_{\mathfrak{C}_m}^{\mathfrak{C}_n})^{-1}$ eşdönüşümü yardımıyla biricik bir doğrusal gönderme $F_A$ ile ilişkilendirebiliriz: $(M_{\mathfrak{C}_m}^{\mathfrak{C}_n})^{-1}:M(m\times n,C)\rightarrow \text{Hom}_C(C^{n},C^{m}),A\mapsto (F_A:C^{n}\rightarrow C^{m},x\mapsto Ax)$
Kanıt: Doğrusal cebir$\square$
Tanım: Bir matris $A\in M(m\times n,C)$ çekirdeği $\text{çek}(A)$ eşleştirildiği doğrusal göndermenin çekirdeği $\text{çek}(F_A):=F_A(\{0\})$ olarak tanımlanır. Matrisin mertebesi ise $\text{mer}(A):=\text{dim}_C(F_A(C^{n}))$'dir.
Sav (Schur normal şekli): $V$ $n$ boyutlu bir $C$-vektör uzayı, $F:V\rightarrow V$ doğrusal olsun. Karakteristik polinom $p_F=(\lambda_1-x)...(\lambda_n-x)$ şeklinde ise, $V$'nin $M_{\mathfrak{L}}^{\mathfrak{L}}(F)=\begin{pmatrix}
\lambda_1 *...*\\0 .\ .\ \ \ : \\:\ \ \ \ \ \ :\\ \ \ \ . \ \ \ \ *\\ \ 0...0\ \ \lambda_n
\end{pmatrix} $ -$\lambda_1,...\lambda_n$ özdeğerler- (Schur normal) şeklinde gösterimi vardır.
Kanıt: Doğrusal cebir$\square$
Tanım: $A,B\in M(n\times n,C)$ için $[A,B]:=AB-BA=0$ geçerliyse bunlara değişen matris denir.
Tanım: $A,B\in M(n\times n,C)$, $\alpha A+\beta B=0$ herhangi $\alpha ,\beta\in C$ için sade ve sadece $\alpha=\beta=0$ olduğunda geçerli ise bu matrislere doğrusal bağımsız denir.
Teorem (Schur): Bir $C$ cismi üzerindeki karşılıklı değişmeli doğrusal bağımsız n derecesinden matrislerin azami sayısı $\lfloor n^{2}/4\rfloor+1$'dir.
İpucu (Mirzakhani): $\mathbb{C}$, $C$ üzerindeki $n\times n$ matrislerinin değişme özelliğine sahip bir ailesi olsun. $C$'nin cebirsel olarak kapalı olduğunu varsayabiliriz(neden?) ve bundan gözleri $C$'nin elemanı tekil olmayan ve $V:=P^{-1}\mathcal{F}P$'yi bir üst üçgen şekilli matris ailesi yapan bir $P$ matrisinin var olduğu çıkar (yine neden?). $V$'nin doğrusal bağımsız "vektörleri" $A_i$'lerin biçimini inceleyin. Burada bu matrislerin uygun bir alt matrislerini $M_i$'ler olarak seçin. Bunlarda bir vektör uzayı $W$ oluşturur -sorunsuz doğrusal bağımsız olduklarını varsayabiliriz(neden?)- ve $k:=\text{dim}(W)$ olsun. O zaman $\exists n_{i1},...,n_{ik}\in C: M_i=\displaystyle\sum_{j=1}^{k}n_{ij}N_j$'dır. $i>k$ için öyle bir $B_i$ tanımlayın ki $t_i$ $n\times 1$ matrisleri için $B_i=\begin{pmatrix}
t_i\\0\end{pmatrix}$ olsun. Benzer şekilde $B'_i=\begin{pmatrix}
t'_i,0\end{pmatrix}\in V$, $s$ uygun bir sayıdan küçük için $t'_i$ $n\times 1$ matrislerini bulalım. Belirli $i,j$ için $t_it'_j=0$ olduğunu gösterelim.
$A$, $i$'inci satırı $t_i$ olmak üzere bir $(\lfloor n^{2}/4\rfloor -k+2)\times n$ matrisi olsun. O halde $A$'nın mertebesi $(\lfloor n^{2}/4\rfloor -k+2)$'ye büyük eşittir (neden?). Aynı zamanda uygun bir $j$ için $At'_j=0$ geçerlidir. Sonuca ulaşmak için şimdi doğrusal cebirden bilinen $\text{mer}(A)+\text{çek}(A)=n$ eşitliğini kullanın.