$(X,n)$ normlu uzay olmak üzere
$$d(x,y):=n(x\oplus (-y))$$
kuralı ile verilen
$$d:X^2\rightarrow \mathbb{R}$$ fonksiyonunun metrik olma koşullarını sağladığını göstermek zor olmasa gerek. Dolayısıyla $$d$$ fonksiyonu $X$ kümesi üzerinde bir metrik; $$(X,d)$$ ikilisi de bir metrik uzaydır. Bu metriğe normdan elde edilen metrik denir.