ilk olarak $P$ idealinin $\mathcal O$ halkasinin tek uretecli bir ideali olmadigini kabul edelim (ve daha sonrasinda celiski elde edelim). $P$ idealinin tek uretecli olmamasi su demek hicbir $x \in P$ icin $P$ idealinin $P=x\mathcal O$ seklinde yazamayiz.
Herhangi bir $x_1 \in \mathcal P$ elemanini alalim. $P$ ideali tek uretecli olmadigindan $P\ne x_1 \mathcal O$ esitsizligi var. Bu esitsizlik sunu der: Bir adet $x_2 \in P$ vardir ki bu $x_2 \not \in x_1\mathcal O$, yani $x_2x_1^{-1} \not \in \mathcal O$.
Bi ara $P$ idealinin degisik bir tanimini verirken sunu demistik, $P$ ideali tersi $\mathcal O$ halkasinda olmayan elemanlari icerir ve su an elimizde $\mathcal O$ halkasinda olmayan $x_2x_1^{-1}$ elemani var, yani $x_1x_2^{-1} \in P$ olmali tanimdan dolayi. Burdan da $x_1 \in x_2P$. Iste elde etmek istedigimiz...
Yukarida herhangi bir eleman icin baslamistik ve bu elemani $x_1$ olarak secmistik. Sonucunda da $x_1 \in x_2P$ sartini saglayan bir $x_2$ elemani bulduk. Eger bu herhangi bir elemanimizi $x_2$ secersek sonucunda $x_2 \in x_3P$ sartini saglayan bir $x_3$ elemani buluruz. Bu sekilde devam edersek $x_i \in x_{i+1}P$ sartini saglayan sonsuz adet $x_1,x_2,\cdots$ elemanlari bulabiliriz.
Simdi ilgili sorudaki ifadeyi hatirlayalim: $\mathcal O$ halkasi $F/K$ fonksiyon cisminin bir deger halkasi olsun ve $P$ de onun maksimal ideali olsun ve $0 \ne x \in P$ olsun. $x_1,\cdots,x_n \in P$ elemanlari $x_1=x$ ve $i=1,\cdots,n-1$ icin $x_i\in x_{i+1}P$ sartini saglasin.O zaman $n \leq [F:K(x)]< \infty$.
Daha onceden ispatladigimiz bu sonuc sunu soyluyor: oyle sonsuz tane bu sarti saglaylayan $x_i$ bulamazsin. Fakat biz bulduk. Ya daha onceden bulmus oldugumuz sonuc hatali (-ki degil) ya da burda bir yanlislik var. Bu da bizim kabulumuz. Demek ki $P$ ideali tek uretecli bir idealmis.
(Devam edecek...)