$ \Bbb Q\left[ x\right] / < x^{7}-6x^{5} +9x^{4}+21>$
$ \mathbb{Q} \left[ x\right] / <x^{5}+x^{3}+2x^2+2>$
$\Bbb Z_2[x]/<x^2+x+\bar 1>$
$\Bbb Q[x]/<9x^2-9x+27>$
$\Bbb Z_5[x]/<\bar 2x^3-x-\bar 2>$
Burada galiba maximal ideal olup olmadiklarına bakmak lazım. Bunun icin de indirgenemez olmalılar (?)
$ x^{7}-6x^{5} +9x^{4}+21$ eisentein den indirgenemez bu yüzden maximal. buradan $ \Bbb Q\left[ x\right] / < x^{7}-6x^{5} +9x^{4}+21>$ cisim.
$x^2+x+\bar 1$ in $\Bbb Z_2[x] $'de çözümü yok. indirgenemez. maximal. buradan $\Bbb Z_2[x]/<x^2+x+\bar 1>$ cisim
$x^{5}+x^{3}+2x^2+2$ in kökleri $\pm2,\pm1$ olmalı. bunlarin hiç biri kök değil indirgenemez. $ \mathbb{Q} \left[ x\right] / <x^{5}+x^{3}+2x^2+2> $ cisim
olmalı ama cevap için bunu söylüyo cisim degil diye. bu yorumlarım yanlis mi? digerlerini nasıl yapabilirim