$A:L(X)\longrightarrow L(X)$ dogrusal fonksiyonu icin $a(x,y):=[A\delta_y](x)$ elemaninin $A\delta_y$ fonksiyonunun $\{\delta_x:x\in X\}$ bazina gore aciliminda $\delta_x$'in katsayisi oldugu ilgili yanitta gosterilmis. O halde $a(x,y)_{x,y\in X}$ matrisi $A$ dogrusal fonksiyonun matrisi olarak gorulebilir. Bu konuda kendinizi ikna edin.
Iki satirlik boslukta kendinizi ikna ettiginize gore sunu ispatlayin: $A_1,A_2:L(X)\longrightarrow L(X)$ iki tane dogrusal fonksiyon ve $a_i(x,y)$ de yukaridaki gibi tanimlanmis olsun. Bu durumda $A:=A_1\circ A_2$ de $L(X)$'den kendisine tanimli dogrusal bir fonksiyondur. Bu uc dogrusal fonksiyonun yukaridaki bicimde tarif edilmis matrisleri arasinda asagidaki iliskinin saglandigini gosterin.$$a(x,y)=\sum_{z\in X}a_1(x,z)a_2(z,y)$$
Not: Bu soru tamamen dogrusal cebir sorusu. Lineer Cebir dersinden gecmis butun ogrencilerin bu soruyu cozebilmesi gerek. Eger Lineer Cebir dersinden gecen bir ogrenci bu soruyu cozemiyorsa isleri biraz basa sarip calismali.