ilk soru aslinda daha onceden gosterdigimiz bir tanima dayaniyor: $\mathcal O=\{z \in F \:|\: z^{-1}\not \in P\}$.
Diger soruda da: (Genelligi kaybetmeden) $\mathcal v(y) > \mathcal v(x)$ oldugunu kabul edebiliriz. (Edebilir miyiz?) Bu durumda gostermemiz gereken: $$\mathcal v(x+y)=\mathcal v(x).$$
Deger fonksiyonun 2. ve 5. ozelliginden $$\mathcal v(-y)=v(-1\cdot y)=\mathcal v(-1)+\mathcal v(y)=0+\mathcal v (y)=\mathcal v (y).$$ Deger fonksiyonunun 3. ozelliginden $$\mathcal v (x)=\mathcal v ((x+y)-y)\geq \min\{\mathcal v (x+y),\mathcal v (-y)\}\geq \mathcal v (x).$$
Basi $\mathcal v(x)$ sonu $\mathcal v(x)$, bu su demek aradakilerin hepsi birbirine esit, yani $\min\{\mathcal v(x+y),\mathcal v(y)\}=\mathcal v(x)$. Icerdekilerden en az biri $\mathcal v(x)$'e esit ve $\mathcal v(y) \ne \mathcal v(x)$. Bu da bize $\mathcal v(x+y)=\mathcal v(x)$ oldugunu verir.
Not: kitap bunu $\mathcal v(x+y) >\min\{\mathcal v(x),\mathcal v(y)\}$ esitsizligini kabul edip (daha sonra celiski bulup) ispatliyor. Ispatlar tamamen benzer sadece ispata yaklasma sekilleri farkli. Bu yontemi de kitaptan okuyabilir ya da kendiniz bu kabul uzerinden soruyu cozmeyi deneyebilirsiniz. Bi kagit kalem alip bazen denemek lazim.