$R$ halkasi degismeli ve birimli bir halka olsun. $R$ halkasinin $M$ ideali maksimaldir ancak ve ancak $R/M$ halkasi cisimdir. (Finite Fields - Lidl & Niederreiter - Teorem 1.47-a)
$\mathcal O_P$ halkasinin disindaki elemanlari gormezden gelme, hepsini bir gorme, kisacasi sallamama anlamina geliyor.
(link) $\tilde K \subset \mathcal O_P$ oldugundan dolayi $\mathcal O_P\to \mathcal O_P/P$ dogal fonksiyonunu $\tilde K \to \mathcal O_P/P$ olacak sekilde tanim kumesini $\tilde K$ olarak sinirlayabiliriz ve bu fonksiyonun cekirdegi $\tilde K \cap P=\{0\}$ oldugundan dolayi $\{0\}$ olmali. Bu da fonksiyonun birebir oldugunu soyler. Kisacasi $\tilde K$ cisminin her elemanini (biricik bir sekilde) $\mathcal O_P/P$ cisminin icerisine gomduk. Bu da $\tilde K$ cisminin bir kopyasinin/benzerinin $\mathcal O_P/P$ cisminin icerisinde bulundugunu soyler. Yani $\tilde K$ cismi $\mathcal O_P/P$ cisminin bir alt cismine izomorf.