İntegralimiz :
$$\int_0^\infty\:\frac{x^{-8/9}}{x^{10/9}+5^{5/9}}\:dx$$
Buradaki eşitlikte $n$ yerine $\frac{1}{9}$ , $m$ yerine $\frac{10}{9}$ ve $s$ yerinede $5^{\frac{5}{9}}$ verelim.
$$\int_0^\infty\:\frac{x^{n-1}}{x^m+s}\:dx=\frac{s^{\frac{n}{m}-1}\,\pi}{m}\csc\bigg(\frac{n\pi}{m}\bigg)$$
$$\int_0^\infty\:\frac{x^{-8/9}}{x^{10/9}+5^{5/9}}\:dx=\frac{9\pi}{2.5^{3/2}}\csc\bigg(\frac{\pi}{10}\bigg)$$
$\csc(\frac{\pi}{10})=2\phi$ olduğunu biliyoruz.($\phi\to$ altın oran)
$$\large\color{#A00000}{\boxed{\int_0^\infty\:\frac{x^{-8/9}}{x^{10/9}+5^{5/9}}\:dx=\frac{9\pi\phi}{5^{3/2}}\approx4,09190003}}$$