1) Her $n\geq1$ icin $x_n\leq2$ esitsizligi saglanir:
$n=1$ icin $x_1=1\leq 2$ dogru. $n=k$ icin dogru oldugunu varsayalim. $x_{k+1}=\sqrt{x_k+2}\leq\sqrt{2+2}=2$.
2) Verilen dizi artandir:
Burda $1\leq x \leq 2$ icin $\sqrt{x+2}-x$ fonksiyonunun pozitif oldugunu gosterecegiz. Bunu oluyucuya birakiyorum. Neden bunu gostermemiz gerekli, bu da onemli? Bunu gostermek dizinin artan oldugunu nasil gosteriyor?
Eger bir dizi artan ve ustten sinirli ise limiti vardir. Bu limit $L$ olsun.
Gosteriniz: $\lim \sqrt{2+x_n}=\sqrt{2+L}$
Gosteriniz: $L=\sqrt{2+L}=L$ ise $L=2$ olmali.
Not: Aslinda ortaogretimsel cozumu (pratik olsun diye) $L=\sqrt{2+L}$'den $L$'yi bulmak olabilir. Fakat bunlarin nedeni de onemli.