Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
3 beğenilme 0 beğenilmeme
364 kez görüntülendi

$(x_n)$ dizisi  $x_1=1$ ve $x_{n+1}=\sqrt{2+x_n}$  biçiminde tanımlanıyor.Buna göre,

$\lim_{n \to \infty}(x_n)$ limiti kaçtır?

Orta Öğretim Matematik kategorisinde (594 puan) tarafından  | 364 kez görüntülendi

1 cevap

1 beğenilme 0 beğenilmeme
1) Her $n\geq1$ icin $x_n\leq2$ esitsizligi saglanir:

$n=1$ icin $x_1=1\leq 2$ dogru. $n=k$ icin dogru oldugunu varsayalim. $x_{k+1}=\sqrt{x_k+2}\leq\sqrt{2+2}=2$.

2) Verilen dizi artandir: 

Burda $1\leq x \leq 2$ icin $\sqrt{x+2}-x$ fonksiyonunun pozitif oldugunu gosterecegiz. Bunu oluyucuya birakiyorum. Neden bunu gostermemiz gerekli, bu da onemli? Bunu gostermek dizinin artan oldugunu nasil gosteriyor?

Eger bir dizi artan ve ustten sinirli ise limiti vardir. Bu limit $L$ olsun.
Gosteriniz: $\lim \sqrt{2+x_n}=\sqrt{2+L}$
Gosteriniz: $L=\sqrt{2+L}=L$ ise $L=2$ olmali.

Not: Aslinda ortaogretimsel cozumu (pratik olsun diye) $L=\sqrt{2+L}$'den $L$'yi bulmak olabilir. Fakat bunlarin nedeni de onemli.
(25.5k puan) tarafından 
Üstten sınırlı ve artan bir dizinin limiti vardır.
20,274 soru
21,803 cevap
73,476 yorum
2,428,478 kullanıcı