Serimiz :
$$\sum_{k\in\mathbb{Z}^+}\:\frac{\cos(2kx)}{k^2}$$
Buradaki serinin integralini alalım.
$$\int\sum_{k\in\mathbb{Z}^+}\:\frac{\sin(2kx)}{k}\,dx=\int\frac{\pi}{2}-x\,dx$$
$$\sum_{k\in\mathbb{Z}^+}\:\frac{\cos(2kx)}{k^2}\,dx=x^2-\pi{x}+C$$
$x$ yerine $0$ verirsek , $C$ ' yi $\zeta(2)=\frac{\pi^2}{6}$ olarak buluruz.
$$\large\color{#A00000}{\boxed{\sum_{k\in\mathbb{Z}^+}\:\frac{\cos(2kx)}{k^2}=x^2-\pi{x}+\frac{\pi^2}{6}\:\:\:,\:\:\:x\in(0,\pi)}}$$