İntegrali şöyle de yazabiliriz :
$$f(x)=\frac{\cos{3x}}{5-\cos{x}}=\dfrac{\frac{e^{3ix}+e^{-3ix}}{2}}{5-\frac{e^{ix}+e^{-ix}}{2}}\\\:\\f(x)=\frac{e^{6ix}+1}{e^{3ix}(10-e^{ix}-e^{-ix})}\\\:\\\int_0^{2\pi}\,\frac{\cos{3x}}{5-\cos{x}}\,dx=\int_0^{2\pi}\,\frac{e^{6ix}+1}{e^{3ix}(10-e^{ix}-e^{-ix})}\;dx$$
$z=e^{ix}$ olacak şekilde değişken değiştirelim.
$$\int_0^{2\pi}\,\frac{e^{6ix}+1}{e^{3ix}(10-e^{ix}-e^{-ix})}\;dx=i\:\oint_{|z|=1}\,\frac{z^6+1}{z^3(z^2-10z+1)}\,dz\\i\:\oint_{|z|=1}\,\frac{z^6+1}{z^3(z-\sqrt{24}-5)(z+\sqrt{24}-5)}\,dz$$
Kalıntı teoremini uygulayalım.Fonksiyonun 3 tane kutbu var.Bunlar ; $z=0\:,\:z=5\pm\sqrt{24}$. Bunlardan sadece $z_0=0$ ve $z_1=5-\sqrt{24}$ noktaları $|z|=1$ eğrisini içinde.Kalıntı teoremini uygularsak :
$$\:\oint_{|z|=1}\,\frac{z^6+1}{z^3(z-\sqrt{24}-5)(z+\sqrt{24}-5)}\,dz=2i\pi\sum_{n=0}^1\,Res(f;z_n)\\\:\\2i\pi\bigg[\lim\limits_{z\to5-\sqrt{24}}\frac{z^6+1}{z^3(z-\sqrt{25}-5)}+\frac{1}{2!}\lim\limits_{z\to0}\,\frac{d^2}{dz^2}\frac{z^6+1}{(z-\sqrt{24}-5)(z+\sqrt{24}-5)}\Bigg]\\\:\\2i\pi\bigg[-\frac{485}{2\sqrt{5}}+\frac{198}{2}\bigg]$$
$$\large\color{#A00000}{\boxed{\int_0^{2\pi}\,\frac{\cos{3x}}{5-\cos{x}}\,dx=i\:\oint_{|z|=1}\,\frac{z^6+1}{z^3(z-\sqrt{24}-5)(z+\sqrt{24}-5)}\,dz\\\:\\\:\:=\Bigg[\frac{485}{\sqrt{5}}-198\Bigg]\pi\approx0.00132}}$$