Bu soru çözülmüş ama çözümde soruda belirtilmeyen varsayımlar kullanılmış. Soruda $f'(x)$ hakkında (sürekliliği gibi ) bir varsayım olmadan ${\lim_{h\to0}f'(2+3h)=f'(2)}$ ve ${\lim_{h\to0}f'(2-2h)=f'(2)}$ yazılmış, bunlar verilenlerden çıkarılamaz. Aslında çözümde $f$ nin 2 dışında türevlenmesine bile gerek yok.
Daha önce sorduğum bir sorudaki (http://matkafasi.com/20623/displaystyle-rightarrow-oldugunu-turevin-varligini-gosteriniz) teknik ile bu varsayıma gerek olmadan aynı sonuca ulaşılabilir. Bunun için, limit hesaplamada bazan kullanılan, ama çoğu zaman açıkça belirtilmeyen (biz, kitabımızda Limit için Değişken Değişikliği Teoremi adı verdik) bir teorem yeterli oluyor. $\begin{eqnarray*}& &\lim_{h\rightarrow0}\frac{f (2+3h)-f (2-5h)}{5h}=\lim_{h\rightarrow0}\frac{(f (2+3h)-f(2))+(f(2)-f (2-5h))}{5h}\\ &=&\lim_{h\rightarrow0}\frac{f (2+3h)-f(2)}{5h}+\lim_{h\rightarrow0}\frac{f(2)- f(2-5h)}{5h}\\&=&\frac35\lim_{h\rightarrow0}\frac{f (2+3h)-f(2)}{3h}+\lim_{h\rightarrow0}\frac{f(2-5h)-f(2) }{-5h}\quad (s=3h,\ t=-5h)\\&=&\frac35\lim_{s\rightarrow0}\frac{f (2+s)-f(2)}{s}+\lim_{t\rightarrow0}\frac{f(2+t)-f(2) }{t}=\frac35f'(2)+f'(2)=8 \end{eqnarray*} $