$\mathbb{Q}_p^\text{al}$, $\mathbb{Q}_p$ cisminin cebirsel kapanışı (algebraic closure) olmak üzere, gösteriniz ki,
1) $\mathbb{Q}_p^\text{al}$ ayrık (discrete) değildir,
2) $\mathbb{Q}_p^\text{al}$ tam (complete) değildir.
Eisenstein polinomlariyla elde edecegin dallanmis genislemeler degerlendirmesi $\frac{1}{p^n}$ olan elemanlar verecektir. O yüzden ayrıklık bozulacaktır. Tam olmadığını göstermek için de maksimal dallanmamış genişlemeye bakmanı öneriyorum.