$\mathbb{Q}$ cisim oldugu icin $\mathbb{Q}[X]$ esas ideal halkasidir ve asal idealler indirgenemez elemanlar tarafindan uretilir. Indirgenemez elemanlar da maksimal ideal tanimlarlar. Bu nedenle $\mathbb{Q}[X]$ halkasinin her asal $I$ ideali $\mathbb{Q}$ cisminin cebirsel bir genislemesini verir: $$\mathbb{Q}[X]/I\hookrightarrow\overline{\mathbb{Q}}$$ Eger iki asal ideal ayni degilse tanimladiklari genisleme de ayni olmayacaktir. Burada suna dikkat etmek gerek. Yukaridaki gomme iyi tanimli degil, bir secime bagli. $I$ idealini ureten polinomun her koku icin boyle bir gomme var. Bu yuzden yukaridaki cismi, secimden bagimsiz hale getirmek icin $I$ idelini ureten polinomun, $p(X)$ diyelim, parcalanis cismiyle degistirelim. Boylece her asal ideal icin bir genisleme bulduk. Ya da baska bir deyisle, birbiriyle eslenik bir eleman kumesi: $$\{\text{$p(X)$ polinomunun kokleri}\}$$ Yani asal idealleri $\overline{\mathbb{Q}}$ cisminin "noktalariyla" esleyebiliyoruz. Tam olarak noktalarla degil de, birbiriyle eslenik olan noktalar kumeleriyle. O halde $$Spec(\mathbb{Q}[X])=\overline{\mathbb{Q}}/Gal(\overline{\mathbb{Q}}/\mathbb{Q})$$ Hatta ayni mantik reel sayilar icin de isleyecektir. Reel sayilarin cebirsel kapanisi karmasik sayilardir ve bu genislemenin Galois grubu iki elemanladir: Birim otomorfizma ve kompleks eslenik operasyonu. Yukaridaki mantikla eslenik elemanlari birbirine yapistirirsak reel sayilar uzerine asal idealleri karakterize etmis oluruz.