$k$ bir cisim, $A$ da girdileri $k$'dan olan $n \times n$ bir matris olsun. $T: k^n \to k^n$ lineer fonksiyonunu her $x \in k^n$ icin $T(x) = Ax$ olarak tanimlayalim. Bir baska deyisle, $A$ matrisi $T$ fonksiyonunun standart tabana gore matrisi olsun.
Varsayalim ki $A$'nin lineer bagimsiz $n$ tane ozvektoru var. Ya da baska bir deyisle, $A$ matrisinin ozvektorleri $k^n$'in bir tabanini olustursun. Bu tabani $B = \{ v_1, \ldots ,v_n\}$ olarak gosterelim ve $v_i$'ye bagli ozdegerin $\lambda_i$ oldugunu varsayalim. ($A$'nin ozvektorlerinin ayni zamanda $T$'nin ozvektorleri de oldugunu unutmayalim.)
Simdi, $T$ fonksiyonunun $B$ bazina gore matrisini yazalim:
$$T(v_i) = \lambda_i.v_i = 0 . v_1 + \ldots + \lambda_i.v_i + \ldots + 0.v_n$$
oldugundan, elde edecegimiz $[T]_B$ matrisinin $i$'inci sutunu $$\begin{bmatrix} 0 \\ \vdots \\ \lambda_i \\ \vdots \\ 0\end{bmatrix}$$ olacak. Yani, $$[T]_B = \begin{bmatrix} \lambda_1 & 0 & 0 & \ldots & 0 \\ 0 & \lambda_2 & 0 & \ldots & 0 \\ 0 & 0 & \lambda_3 & \ldots & 0 \\ \vdots & \vdots & \vdots& \vdots & \vdots \\ 0 & 0& 0 & \ldots & \lambda_n\end{bmatrix}$$ olacak. Kosegen bir matris elde ettik. Simdi taban degistirme formulunu uygularsak, $$A = [T]_{std} = P [T]_B P^{-1}$$ elde ediyoruz. $P$'nin ne oldugu Okkes Dulgerci'nin cevabinda soylenmis.
Demek ki $n \times n$ matrisimizin $n$ tane lineer bagimsiz ozvektoru varsa, matrisimiz kosegenlestirilebilir.
Ote yandan, eger matrisimiz kosegenlestirilebilirse $A = P D P^{-1}$ olacak sekilde tersinir bir $P$ matrisi ve kosegen bir $D$ matrisi var demektir. $P$ tersinir oldugu icin, sutunlari lineer bagimsizdir. $\{ p_1, \ldots , p_n \}$ kumesi, $k^n$'nin $P$'nin sutunlarindan olusan tabani olsun. Eger $D$ kosegen matrisinin $ii$ girdisini $d_i$ ile gosterecek olursak, ve $T$ lineer fonksiyonu en bastaki gibi tanimlanmissa, $$T(p_i) = d_i p_i$$ olur ki bu da $p_i$, $T$'nin (dolayisiyla $A$'nin) ozvektoru oldugu anlamina gelir. Yani, $A$'nin $n$ tane lineer bagimsiz ozvektoru vardir.
O halde, eger $n \times n$ matrisimiz kosegenlesirilebilirse, matrisimizin $n$ tane lineer bagimsiz ozvektoru vardir.
Iki kalinyaziyi birlestirirsek bir matrisin kosegenlestirilebilmesi icin gerek ve yeter kosulun matrisin $n$ tane lineer bagimsiz ozvektore sahip olmasi oldugunu goruyoruz.
-Okkes Dulgerci'nin yanitina yorum: Eger butun ozdegerler birbirinden farkliysa, bu ozvektorlerin lineer bagimsiz oldugu anlamina gelir. Ama eger $k$ cismi cebirsel kapali bir cisim degilse, $A$'nin karakteristik polinomunun $n$ tane koku olmasi garanti edilemez. Boyle bir durumda da yeteri kadar ozdeger bulunamayacagi icin, vektor uzayinin boyutu kadar lineer bagimsiz ozvektor elde edilemez. Ama eger $k$ cebirsel kapaliysa, ozdegerlerin farkli olmasi kosegenlestirilebilmeyi garantiler.
-Son yorum: Taban degistirme olayi guzel bir sey.