Bu eğrinin üzerindeki noktalar $(x,\pm\sqrt{2x+6}) $ şeklinde olup Orijine en yakın olan noktalar $A(x,\sqrt{2x+6})$ ve $A'(x,-\sqrt{2x+6})$ olsun. O zaman $|AO|=\sqrt{x^2+2x+6}$ nın türevini sıfırlayan $x$ değerini bulmalıyız. $\frac{2x+2}{2\sqrt{x^2+2x+6}}=0\longrightarrow x=-1$ bulunur. $A(-1,2), A'(-1,-2)$ olur ve Bu noktadan geçen teğet denklemi ise:
$2y.y'=2\longrightarrow y'=\frac{1}{\pm\sqrt{2x+6}}=\frac{1}{\pm2}$ olacaktır.
$A(-1,2)$ den geçen teğet denklemi $y-2=\frac{1}{2}(x+1)$ den $2y-x=5$ ya da
$A'(-1,-2)$' den geçen teğet denklemi: $y-2=\frac{1}{-2}(x+1)$ den $x+2y=3$ olacaktır.