Bir cevap da ben ekleyeyim.
Tanım: $(X,\tau)$ topolojik uzay ve $A\subseteq X$ olmak üzere
$$A, \,\ \tau\text{-bağlantısız}$$
$$:\Leftrightarrow$$
$$(\exists U,V\in\tau)(A\cap U\neq \emptyset)(A\cap V\neq \emptyset)(A\cap (U\cap V)=\emptyset)(A\cap (U\cup V)=A)$$
------------------------------------------------------------------------------------------------------------------------------------
$$A, \,\ \tau\text{-bağlantılı}$$
$$:\Leftrightarrow$$
$$A, \,\ \tau\text{-bağlantısız değil}$$
$$\Leftrightarrow$$
$$(\forall U,V\in\tau)\left[(A\cap U=\emptyset) \vee (A\cap V=\emptyset) \vee (A\cap (U\cap V)\neq\emptyset) \vee (A\cap (U\cup V)\neq A)\right]$$
------------------------------------------------------------------------------------------------------------------------------------
I. Durum: $x\in U\in\tau$ ve $x\in V\in\tau$ olsun.
$ \left[(\underset{0}{\underbrace{\{x\}\cap U=\{x\}}}) \vee (\underset{0}{\underbrace{\{x\}\cap V=\{x\}}}) \vee (\underset{1}{\underbrace{\{x\}\cap (U\cap V)=\{x\}}}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cup V)=\{x\}}})\right]\equiv 1$
II. Durum: $x\in U\in\tau$ ve $x\notin V\in\tau$ olsun.
$\left[(\underset{0}{\underbrace{\{x\}\cap U=\{x\}}}) \vee (\underset{1}{\underbrace{\{x\}\cap V=\emptyset }}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cap V)=\emptyset }}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cup V)=\{x\}}})\right]\equiv 1$
III. Durum: $x\notin U\in\tau$ ve $x\notin V\in\tau$ olsun.
$\left[(\underset{1}{\underbrace{\{x\}\cap U=\emptyset}}) \vee (\underset{1}{\underbrace{\{x\}\cap V=\emptyset}}) \vee (\underset{0}{\underbrace{\{x\}\cap (U\cap V)=\emptyset}}) \vee (\underset{1}{\underbrace{\{x\}\cap (U\cup V)=\emptyset}})\right]\equiv 1$