$X$ ve $Y$ normlu uzaylar olmak üzere $A:X\rightarrow Y$ bir lineer dönüşüm olsun. Bu dönüşümün grafiği aşağıdaki kümedir:
$\Gamma (A)=\{(x,y)\mid (x,y)\in X\times Y~,~y=Ax\}$
Tanım:
$A$ bir $H$ Hilbert uzayı üzerinde $D(A)\subseteq H$ tanım kümesi ile tanımlı bir işlemci olsun. Eğer $\Psi\in D(A)$ için $\|A\Psi\|\leq k\|\Psi\|$ olacak şekilde bir $k\in \Bbb{R}^{+}$ varsa $A$ ya sınırlı işlemci denir. $\|.\|$; $H$ üzerinde skalar çarpım ile tanımlanan vektörün normunu göstermektedir.
Şayet böyle bir $k\in \Bbb{R}^{+}$ bulunamıyorsa işlemci sınırsız demektir.
Hellinger-Toeplitz Teoremi:
$A$ bir $X$ Hilbert uzayı üzerinde her yerde tanımlı ve $\forall x,y\in X$ için $<x,Ay>=<Ax,y>$ (simetri özelliği) sağlayan bir işlemci olsun. Bu durumda $A$ sınırlıdır.
Hellinger-Toeplitz teoremi; kapalı graf teoreminin sonucu olarak elde edilir. Şöyle ki;
"Simetri özelliğine sahip her yerde tanımlı lineer işlemcinin grafiği kapalıdır ve kapalı graf
teoreminden işlemci sınırlıdır.
İspata geçmeden önce Kapalı graf teoremini ifade etmek istiyorum.
Kapalı graf teoremi:
$X$ ve $Y$ Banach uzaylar olmak üzere $T:X\rightarrow Y$ lineer işlemci ise $T$ süreklidir $\Leftrightarrow \Gamma(T)$ $X\times Y$ de kapalıdır.
Yani eğer $T:X\rightarrow Y$ Banach uzayları arasında bir işlemci ise $X$ deki her $\{x_{n}\}$ dizisi için
$\{x_{n}\}$ $X$ de bir $x$ elemanına yakınsak ise $\{T(x_{n})\}$ diziside $Y$ de yakınsaktır ve limiti $T(x)$ şeklindedir.
İspat:(Hellinger-Toeplitz Teoremi)
$A$; $X$ Hilbert uzayı üzerinde her yerde tanımlı ve her $x,y\in X$ için $<x,Ay>=<Ax,y>$ özelliğini sağlasın. $\Gamma(A)$ kapalı mıdır?
$\{x_{n}\}$ $X$ de bir dizi olsun. Kabul edelim ki;$\{x_n\}$ $x\in X$ e yakınsak ve $\{Ax_{n}\}$ $y$ ye yakınsak olsun. $y=Ax$ olduğunu görelim. Her $z\in X$ için $<z,y>=lim_{n\rightarrow \infty}<z,Ax_{n}>=lim_{n\rightarrow \infty}<Az,x_{n}>=<Az,x>=<z,Ax>$ şeklindedir. Dolayısıyla $\Gamma(A)$ kapalıdır ve $A$ sınırlı olur. İspat biter.
Bu teorem $H$ Hilbert uzayı üzerinde her yerde tanımlı ve simetri özelliğine sahip lineer işlemcinin daima sınırlı olduğunu söyler. Yani; Hellinger-Toeplitz teoremi sınırsız simetrik bir işlemcinin $H$ nın tamamı üzerinde tanımlı olamayacağını söyler. Sınırsız işlemcilerin tanımlı olduğu yeri belirlemek önemlidir(sebebini bilmiyorum). Kuantum mekaniğinde örneğin enerji gibi; sınırsız ancak simetri özelliğine sahip işlemciler vardır. Hellinger-Toeplitz teoremi böyle operatörlerin her yerde tanımlı olmadığını söyler.
Bundan sonrası için sözü kuantum mekanikçilere bırakıyorum.