$u=\sqrt{x}+1$ değişken değiştirmesi ile $du=\frac{dx}{2\sqrt{x}}$ ve $dx=2(u-1)du$ olur. İntegralimiz ise
$$\int\frac{2(u-1)du}{\sqrt{u}}=2(\int\sqrt{u}du-\int\frac{du}{\sqrt{u}})=2(\frac{2}{3}\sqrt{u^{3}}-2\sqrt{u}+C)=$$
$$\frac{4}{3}\sqrt{(\sqrt{x}+1)^{3}}-4\sqrt{(\sqrt{x}+1}+C$$
şeklinde bulunur.