$f\left( ax\right) +f\left( bx\right) $ toplamında $x=\frac{t}{b}$ ve $c=\frac{a}{b}$ diyerek, aşağıdaki denk problemi elde ederiz:
$f\left( t\right) $, sabitten farklı , sürekli ve periyodik bir fonksiyon ise $F\left( t\right) =f\left( t\right) +f\left( ct\right) $ fonksiyonunun periyodik olması için $c$'nin rasyonel sayı olması gerekli ve yeterlidir. Yeterli olacağı açıktır. Gerekli olduğunu gösterelim.
$f$ 'in en küçük pozitif periyodu $p$ olsun. O halde, $f\left(ct\right) $ fonksiyonunun en küçük periyodu $\frac{p}{c}$ olur. $F\left( t\right) $'nin periyodik olduğunu ve bir pozitif periyodunun $q$ olduğunu varsayalım
$(\forall t\in\mathbb{R})$ için \[F\left( t+q\right) =F\left( t\right)\] yani \[f\left( t+q\right) +f\left( ct+cq\right) =f\left( t\right) +f\left(ct\right)\] ve buradan \[f\left( t+q\right) -f\left( t\right) =f\left( ct\right) -f\left(ct+cq\right)\] olur.
Bu eşitliğin sağı ve solu, aynı $g\left(t\right) $ fonksiyonuna eşittir:
$g\left( t\right) =f\left( t+q\right) -f\left( t\right) $'den, her $t$ için $g\left( t+p\right) =g\left( t\right) $ olur. Yine, $g\left( t\right)=f\left( ct\right) -f\left( ct+cq\right) $'den, her $t$ için $g\left( t+\frac{p}{c}\right) =g\left( t\right) $ olur. Demek ki, $g$ sürekli
fonksiyonu sabitten farklı ise, $p$ ve $\frac{p}{c}$ sayıları, $g$'nin en küçük pozitif periyodunun katları olacaktır. Dolayısıyla, bir $m,k\in\mathbb{N}$ için $p$'nin $p/c$'ye oranı $\frac{m}{k}$'ya eşittir. Yani, $c=\frac{m}{k}\in\mathbb{Q}$.
Eğer $g$ sürekli fonksiyonu sabit ise, her $t$ için
\[f\left( t+q\right) -f\left( t\right) =\ell\] ( $\ell $ sabit) buradan
\[f\left( t+q\right) =f\left( t\right) +\ell\]
ve sonuç olarak $\forall k\in\mathbb{N}$ için \[f\left( t+kq\right) =f\left( t\right) +k\ell\]
bulunur. $\ell =0$ olmak zorundadır. Çünkü, aksi halde, eşitliğin sol tarafı sınırlı , sağ tarafı sınırlı değil. $\ell =0$ olursa, her $t\in\mathbb{R}$ için $f\left( t+q\right) =f\left( t\right) $'den $q$ sayısı $f$ 'in bir periyodu olduğunu görürüz. O halde bir $n\in\mathbb{N}$ için $q=np$ olur. Yine, \[f\left( t+q\right) -f\left( t\right) =f\left( ct\right) -f\left(ct+cq\right)\]
eşitliğinden, her $t$ için $f\left( ct\right) =f\left(ct+cq\right) $, yani, $q$ sayısı $f\left( ct\right) $ fonksiyonunun bir periyodudur. O halde, bir $k$ ve $m$ için $kq=m\frac{p}{c}$ sağlanmalıdır. Burada, $q=np$ eşitliğini kullanırsak, $c$'nin bir rasyonel sayı olduğunu görürüz.