Kısmî integral iş görmeli: $$x^{\ln x}=u,\, dv=dx$$ alalım. Buradan $$du=2\frac{\ln x}{x}x^{\ln x}$$ buluruz. Kısmi integral ifadesine koyarsak: $$x^{\ln x+1}-2\int \ln x x^{\ln x}\,dx$$ bulunur. Bu aşamada $\ln x=t$ dönüşümü yaparsak, o zaman son integral $$\int \ln x x^{\ln x}\,dx=\int te^te^{t^2}\,dt$$ halini alır. Yine kısmi integrasyonla, $$te^{t^2}\,dt=dv,\,u=e^t$$ ile $$\frac{1}{2}e^te^{t^2}-\frac{1}{2}\int e^te^{t^2}\,dt$$ bulunur. Son integralde içerisini $e^{1/4}$ ile bölüp çarpınca, $e$'nin üstündeki kısım tam kare olur: $e^{(t+\frac{1}{2})^2}$. Bu ifade ise elemanter fonksiyonlar cinsinden yazılamaz. Şimdi hepsini toparlayalım:
$$x^{\ln x+1}-\left(x^{\ln x+1}-e^{-1/4}\int e^{(t+\frac{1}{2})^2}\,dt\right),$$ $$=e^{-1/4}\int e^{(t+\frac{1}{2})^2}\,dt$$ Sonuçta açık şekilde integre etmek mümkün değil! Kompleks hata fonksiyonu cinsinden ise,
$$\int x^{\ln x}\,dx=e^{-1/4}\int e^{(t+\frac{1}{2})^2}\,dt=e^{-1/4}\frac{\sqrt \pi}{2}\mbox{erfi}\left (t+\frac{1}{2}\right)$$ ve $$\int x^{\ln x}\,dx=\sqrt{\frac{\pi}{4e^{1/2}}}\mbox{erfi}\left( \ln x+\frac{1}{2}\right)+C$$ bulunur.
Fakat Louville'in teoremine dayanara pek işlem yapmadan da bilebilirdik elemanter olarak intergre edilemeyeceğini!
Bu teoremi uygulayabilmek için integrandın $fe^g$ şeklinde olması lâzım ($g\not= \mbox{sabit}$). Bu teoreme göre eğer, $$f=a'+ag'$$ birinci mertebeden lineer diferansiyel denklemini sağlayan $a$ rasyonel fonksiyonu mevcutsa, o zaman $fe^g$ de rasyonel fonlsiyonlar cinsinden integre edilebilir demektir! Oysa, bu denklemin genel çözümü, kolayca gösterilebilir ki,
$$a=e^{-x}\int e^x x^{\ln x-1}\,dx+Ce^{-x}$$ şeklindedir. Bunun sonucu ise sanırım olumsuzdur. Olumsuz derken interge edilemez demek istedim.
Keşke burada birileri Louville teoremini ve sonuçlarını genişçe açıklasa da istifade etsek!