Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
962 kez görüntülendi


$(m^3-n^2,1) = (19,m-n)$ olduğuna göre, $m+n$ toplamı kaçtır?

Orta Öğretim Matematik kategorisinde (12 puan) tarafından 
tarafından düzenlendi | 962 kez görüntülendi

m,n nedir? Tamsayı mı?

İlk ifadedeki $m^3-n^2$ hatalı olabilir mi?

Nisa eğer m^3 ifadesini iki tane \$ işaretinin arasına yazarsan $m^3$ olarak gözükür ki galiba bu da senin istediğin. Bu seferkini ben düzenliyorum, bir dahakine dikkat et olur mu? Bir de problemde şimdiye kadar ne yaptığını ve nerede takıldığını yazarsan daha iyi yardımcı olabiliriz.

1 cevap

0 beğenilme 0 beğenilmeme

İpucu: 

$$m^3-n^2=19 \,\ \text{ ve } \,\ m-n=1$$ olmalıdır.

$$m-n=1\Rightarrow m=n+1$$ olduğundan $$(n+1)^3-n^2=19$$

$$\Rightarrow$$

$$n=\ldots$$

(11.5k puan) tarafından 
20,274 soru
21,803 cevap
73,476 yorum
2,428,488 kullanıcı