Bildiğimiz kümelerin en temel özelliklerinde birisi şudur:
$A$ kümesi ile $B$ kümesi birbirine eşittir ancak ve ancak $A$ ve $B$ kümeleri tam olarak aynı elemanlara sahiplerse.
Dolayısı ile bir kümeyi belirleyen şey sahip oldukları elemanlardır. Bu yüzden bir kümeyi ifade ederken küme parantezi içinde kümenin elemanlarını virgülle ayırarak yazdığımız gösterimi kullanırız. Bu gösterimde geleneksel olarak elemanların her biri bir kez yazılır ve tabi ki $\{1, 3, 5\}$ kümesi ile $\{3,1,5\}$ kümesi eşit olur. Tabi ki dilerseniz geleneğin dışına çıkıp elemanları birden fazla kez yazabilirsiniz $\{1,1,3,3,3,5\}$ ama bu küme bildiğimiz kümeler kuramında (ki bildiğimiz kümeler kuramının dışına çıkmak için geçerli sebepler ancak çok spesifik araştırma alanlarında bulunabilir, ortalama bir akademisyen için de buranın dışında çalışmayı gerektirecek zorunluluklar yoktur) yine $\{1,3,5\}$ kümesine eşit olur.
Fakat şu tabi ki olağan. Mesela bir torbada 2 adet mavi top, 3 adet kırmızı top bir adet de yeşil top olsun. Bu torbanın içindekileri topları göstermek için sırasız olarak $M,M,K,K,K,Y$ listesini kullanabilirsiniz. Fakat bu sırasız liste bildiğiniz küme ile aynı şey değildir. Bunun farkında olarak $\{M,M,K,K,K,Y\}$ gösterimini kullanabilir, bu gösterimin kolaylıklarından istifade edebilirsiniz ama bu gösterimi bildiğimiz kümelerle karıştırmamak kaydıyla.