$\lim_{x\to\infty}(\sqrt[3]{x^3+x}-x)\frac{(\sqrt[3]{(x^3+x)^2}.+\sqrt[3]{x^3+x}.x+x^2)}{\sqrt[3]{(x^3+x)^2}.+\sqrt[3]{x^3+x}.x+x^2)}$=$\lim_{x\to\infty}\frac{x^3+x-x^3}{\sqrt[3]{(x^3+x)^2}+\sqrt[3]{x^3+x}.x+x^2}=\lim_{x\to\infty}\frac{x}{\sqrt[3]{x^6+2x^4+x^2}+\sqrt[3]{x^3+x}.x+x^2}$
$=\lim_{x\to\infty}\frac{x}{x^2\sqrt[3]{1+\frac{2}{x^2}+\frac{1}{x^4}}+x^2\sqrt[3]{1+\frac{1}{x^2}}+x^2}$
$=\lim_{x\to\infty}\frac{x}{x^2[\sqrt[3]{1+\frac{2}{x^2}+\frac{1}{x^4}}+\sqrt[3]{1+\frac{1}{x^2}}+1]}$
$=\lim_{x\to\infty}\frac{1}{x[\sqrt[3]{1+\frac{2}{x^2}+\frac{1}{x^4}}+\sqrt[3]{1+\frac{1}{x^2}}+1]}=0$ olur.