Bu iki doğru paralel değillerse bir noktada kesişirler, ve açı ölçüleri ikişer ikişer birbirine eşit dört açı oluştururlar. Açı ölçüleri eşit olan açıların açıortaylar birbirine diktir. Bu iki açı ortayın denklemi, açıortay tanımından :$\frac{9x-2y-7}{\sqrt{81+4}}=\pm\frac{7x+6y+8}{\sqrt{49+36}}$ buradan
$9x-2y-7=7x+6y+8\longrightarrow 2x-8y-15=0$ bir açıortay denklemi,
$9x-2y-7=-7x-6y-8\longrightarrow 16x+4y+1=0$ iki açıortay denklemi bulunur. Söz konusu olan noktayı iç bölgesinde bulunduran açının açıortayının hangisi olduğu işini size bırakıyorum.