Herhangi bir $n>0$ tamsayisi icin $$\sqrt{2^n}=\sum\limits_{k=0}^3 a_{2k+1}e^{(2k+1)i\pi/8}$$ olacak sekilde $a_i$ tam sayilari var midir?
Eski hali: $\sqrt2=\sum\limits_{k=0}^3 a_{2k+1}e^{(2k+1)i\pi/8}$ ve $2=\sum\limits_{k=0}^3 b_{2k+1}e^{(2k+1)i\pi/8}$ olacak sekilde $a_i, b_i$ tam sayilari var midir?