$x=(x_j)_{j\in J}$ olsun.
$$x\in\left(\prod_{\alpha\in J}A_{\alpha}\right)\bigcap \left(\prod_{\alpha\in J}B_{\alpha}\right)$$
$$\Leftrightarrow$$
$$ x\in\left(\prod_{\alpha\in J}A_{\alpha}\right)\wedge x\in \left(\prod_{\alpha\in J}B_{\alpha}\right) $$
$$\Leftrightarrow$$
$$(\forall \alpha\in J)(x_{\alpha}\in A_{\alpha})\wedge (\forall \alpha\in J)(x_{\alpha}\in B_{\alpha})$$
$$\Leftrightarrow$$
$$(\forall \alpha\in J)(x_{\alpha}\in A_{\alpha}\wedge x_{\alpha}\in B_{\alpha})$$
$$\Leftrightarrow$$
$$(\forall \alpha\in J)(x_{\alpha}\in A_{\alpha}\cap B_{\alpha})$$
$$\Leftrightarrow$$
$$x\in\prod_{\alpha\in J}\left(A_{\alpha}\cap B_{\alpha}\right).$$
İspatta aşağıdaki denkliği kullandığımıza dikkat et.
Not: $p(x)$ ve $q(x)$, konu evreni $E$ olan iki açık önerme olmak üzere
$$(\forall x\in E)(p(x)\wedge q(x))\Leftrightarrow [(\forall x\in E) p(x)\wedge (\forall x\in E)q(x)] $$