$A=\left(
\begin{array}{cc}
a & b \\
c & d \\
\end{array}
\right)$ olsun.
$p(\lambda)=\left|
\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda \\
\end{array}
\right|=\lambda^2-(a+d)\lambda+ad-bc=\lambda^2-Iz(A)\lambda+Det(A)$ olur.
$\lambda_{1,2}=\frac{Iz(A)\mp\sqrt{Iz(A)^2-4Det(A)}}{2}$
Iki farkli eigenvalues icin $Iz(A)^2-4Det(A)>0$ olmali.
Istenen $S=\{\Delta_1,\Delta_2,...,\Delta_n\}$ kumesinin elemanlari toplami oyle ki:
$i=1,2,...,n$ icin $\Delta_i=Iz(A_i)^2-4Det(A_i)>0 $,
$\Delta_i\neq \Delta_j$
$Iz(A_i)$, $Det(A_i) $ asal sayi ve
$A_i$ elemanlari birbirinden farkli $2\times2$ matris