Deneysel olarak sunlari soyleyebiliriz.
\begin{array}{c|ccc} n& \sqrt{n} &\displaystyle\sum_{k=1}^{n} \zeta^{k^2}&\Bigg|\displaystyle\sum_{k=1}^{n} \zeta^{k^2}\Bigg|\\\hline
1 & 1 & 1 & 1 \\
3 & \sqrt{3} & i \sqrt{3} & \sqrt{3} \\
5 & \sqrt{5} & \sqrt{5} & \sqrt{5} \\
7 & \sqrt{7} & i \sqrt{7} & \sqrt{7} \\
9 & 3 & 3 & 3 \\
11 & \sqrt{11} & i \sqrt{11} & \sqrt{11} \\
13 & \sqrt{13} & \sqrt{13} & \sqrt{13} \\
15 & \sqrt{15} & i \sqrt{15} & \sqrt{15} \\
17 & \sqrt{17} & \sqrt{17} & \sqrt{17} \\
19 & \sqrt{19} & i \sqrt{19} & \sqrt{19} \\
21 & \sqrt{21} & \sqrt{21} & \sqrt{21} \\
23 & \sqrt{23} & i \sqrt{23} & \sqrt{23} \\
25 & 5 & 5 & 5 \\
27 & 3 \sqrt{3} & 3 i \sqrt{3} & 3 \sqrt{3} \\
29 & \sqrt{29} & \sqrt{29} & \sqrt{29} \\
31 & \sqrt{31} & i \sqrt{31} & \sqrt{31} \\
\end{array}
\begin{array}{c|ccc} n& \sqrt{2n} &\displaystyle\sum_{k=1}^{n} \zeta^{k^2}&\Bigg|\displaystyle\sum_{k=1}^{n} \zeta^{k^2}\Bigg|\\\hline
2 & 2 & 0 & 0 \\
4 & 2 \sqrt{2} & (2+2 i) \sqrt{1}& 2 \sqrt{2} \\
6 & 2 \sqrt{3} & 0 & 0 \\
8 & 4 & (2+2 i) \sqrt{2} & 4 \\
10 & 2 \sqrt{5} & 0 & 0 \\
12 & 2 \sqrt{6} & (2+2 i) \sqrt{3} & 2 \sqrt{6} \\
14 & 2 \sqrt{7} & 0 & 0 \\
16 & 4 \sqrt{2} & (2+2 i) \sqrt{4} & 4 \sqrt{2} \\
18 & 6 & 0 & 0 \\
20 & 2 \sqrt{10} & (2+2 i) \sqrt{5} & 2 \sqrt{10} \\
22 & 2 \sqrt{11} & 0 & 0 \\
24 & 4 \sqrt{3} & (2+2 i) \sqrt{6} & 4 \sqrt{3} \\
26 & 2 \sqrt{13} & 0 & 0 \\
28 & 2 \sqrt{14} & (2+2 i) \sqrt{7} & 2 \sqrt{14} \\
30 & 2 \sqrt{15} & 0 & 0 \\
\end{array}
$n=2m+1:\quad\Bigg|\displaystyle\sum_{k=1}^{n} \zeta^{k^2}\Bigg|=\sqrt{n} $
$n=2m\wedge n\neq4m:\quad\Bigg|\displaystyle\sum_{k=1}^{n} \zeta^{k^2}\Bigg|=0$
$n=4m:\quad\Bigg|\displaystyle\sum_{k=1}^{n} \zeta^{k^2}\Bigg|=\sqrt{2n} $
Kirmizi noktalar $n=2m+1$ ve mavi noktalar $n=2m$