Amac: her $x \in G$ icin $xHx^{-1 }\subseteq H$ oldugunu gostermek.
Ispat: Her $x \in G$ ve $h \in H$ icin $xhx^{-1}=(xh)^2h^{-1}(x^{-1})^2 \in H$ olur. Cunku kareler $H$'nin icerisine duser.
Ikincisi icin: $a \in G/H$ alalim. $a^2 \in H/H$ olur. Yani birim eleman olur. Eger bir grupta her $x$ elemani icin $x^2=e$ ise grup abel olur.