$ab.cd=(10.a+b)(10.c+d)=100.a.c+10.a.d+10.b.c+b.d $ olduğundan bu toplamın en küçük olması $100$ katsayısı olan $a.c$ 'nin en küçük olmasını gerektirir. Ya $a=1,c=2$ ya da $a=2,c=1$ almalıyız. Gerçi sonuç fark etmeyecektir onun için $a=1,c=2$ olsun. geriye toplamları $17-(1+2)=14$ olan iki rakam kaldı. Bunları da ya $6,8$ ya da $9,5$ olarak alacağız.
Eğer $b=6,d=8$ alınırsa toplam:$ 100.1.2+10.1.8+10.2.6+8.6=448$ olur. Ama $b=5,d=9$ ki daha büyük çıkacaktır. O zaman da $100.1.2+10.1.9+10.2.5+5.9=435$ olur. O halde en küçük çarpım değeri $435$ olmalıdır.