$$\Large A\xrightarrow{k_1}B\xrightarrow{k_2}C$$
$A$'nin derisimi $[A]$ ile ve $t=0$ daki derisimi ise $ [A]_0$ ile gosterelim. $[A]_0=[A]_0, \quad[B]_0=0,\quad[C]_0=0.$ Reaksiyon hizi $\dfrac{d[X]}{dt}$ ile verilir.
\begin{array}{lr} \dfrac{d[A]}{dt}=-k_1[A]^n&&&&&(1 ) \\ \\ \dfrac{d[B]}{dt}=k_1[A]^n-k_2[B]^m &&&&& (2) \\\\ \dfrac{d[C]}{dt}=-k_2[B]^m&&&&& (3) \end{array}
____________________________________________________________
$a)\quad n=1, m=1$
\begin{array}{lr} \dfrac{d[A]}{dt}=-k_1[A]&&&&&(1 ) \\ \\ \dfrac{d[B]}{dt}=k_1[A]-k_2[B] &&&&& (2) \\\\ \dfrac{d[C]}{dt}=-k_2[B]&&&&& (3) \end{array}
$(1)$'i cozerek baslayalim.
$\dfrac{d[A]}{dt}=-k_1[A]\implies \dfrac{d[A]}{[A]}=-k_1dt\implies \displaystyle\int\dfrac{d[A]}{[A]}=\int -k_1dt $
$\ln[A]=-k_1t+C_1\implies[A]=C_1e^{-k_1t}$
$t=0\implies [A]_0=C_1\implies [A]=[A]_0e^{-k_1t}$
$(2)$ de yerine koyalim.
$\dfrac{d[B]}{dt}=k_1[A]_0e^{-k_1t}-k_2[B]\implies\dfrac{d[B]}{dt}+k_2[B]=k_1[A]_0e^{-k_1t}$ homojen olmayan lineer denklem elde edilir.
$x'+p(t)x=f(t)$ birinci dereceden homojen olmayan diff denklemin genel cozumunu hatirlayalim.
Interal carpani $\displaystyle\mu(t)=e^{\int p(t)dt}=e^{\int k_2dt}=e^{k_2t}$ olur. Her iki tarafi $\mu(t)$ ile carparsak
$e^{k_2t}\dfrac{d[B]}{dt}+k_2[B]e^{k_2t}=k_1[A]_0e^{-k_1t}e^{k_2t}$
$\displaystyle\int\dfrac{d\left([B]e^{k_2t}\right)}{dt}dt=k_1[A]_0\int e^{(k_2-k_1)t}dt$
$[B]e^{k_2t}=k_1[A]_0\dfrac{e^{(k_2-k_1)t}}{k_2-k_1}+C_1$
$[B]=k_1[A]_0\dfrac{e^{(k_2-k_1)t}}{k_2-k_1}e^{-k_2t}+C_1e^{-k_2t}$
$[B]_0=k_1[A]_0\dfrac{1}{k_2-k_1}+C_1=0\implies C_1=-k_1[A]_0\dfrac{1}{k_2-k_1}$
$[B]=\dfrac{k_1[A]_0}{k_2-k_1}\left(e^{-k_1t}-e^{-k_2t}\right)$
Bu noktadan sonra $[B]$'yi $3)$'de yerine koyup $[C]$'yi bulabiliriz. Diger yontem ise $[A]+[B]+[C]=[A]_0\implies[C]=[A]_0-[A]-[B]$ esitliginden $[C]$'yi bulabiliriz.
$[C]=[A]_0-[A]_0e^{-k_1t}-\dfrac{k_1[A]_0}{k_2-k_1}\left(e^{-k_1t}-e^{-k_2t}\right)$ olur.
$a)\quad n=2, m=1$
\begin{array}{lr} \dfrac{d[A]}{dt}=-k_1[A]^2&&&&&(1 ) \\ \\ \dfrac{d[B]}{dt}=k_1[A]^2-k_2[B] &&&&& (2) \\\\ \dfrac{d[C]}{dt}=-k_2[B]&&&&& (3) \end{array}
$(1)$'i cozerek baslayalim.
$\dfrac{d[A]}{dt}=-k_1[A]^{2}\implies \dfrac{d[A]}{[A]^{2}}=-k_1dt\implies \displaystyle\int[A]^{-2}d[A]=\int -k_1dt $
$ -\dfrac{1}{[A]}=-k_1t+C_1\implies[A]=\dfrac{1}{k_1t-C_1}$
$t=0\implies [A]_0=\dfrac{1}{-C_1}\implies C_1=\dfrac{1}{-[A]_0}\implies [A]=\dfrac{[A]_0}{[A]_0k_1t+1}$
$(2)$ de yerine koyalim.
$\dfrac{d[B]}{dt}=k_1\left(\dfrac{[A]_0}{[A]_0k_1t+1}\right)^2-k_2[B]\implies\dfrac{d[B]}{dt}+k_2[B]=k_1\left(\dfrac{[A]_0}{[A]_0k_1t+1}\right)^2$ homojen olmayan lineer denklem elde edilir.
$x'+p(t)x=f(t)$ birinci dereceden homojen olmayan diff denklemin genel cozumunu hatirlayalim.
Interal carpani $\displaystyle\mu(t)=e^{\int p(t)dt}=e^{\int k_2dt}=e^{k_2t}$ olur. Her iki tarafi $\mu(t)$ ile carparsak
$e^{k_2t}\dfrac{d[B]}{dt}+k_2[B]e^{k_2t}=k_1\left(\dfrac{[A]_0}{[A]_0k_1t+1}\right)^2e^{k_2t}$
$\displaystyle\int\dfrac{d\left([B]e^{k_2t}\right)}{dt}dt=k_1[A]_0^2\int \dfrac{e^{k_2t}}{\left([A]_0k_1t+1\right)^2}dt$
$\displaystyle[B]e^{k_2t}=k_1[A]_0^2\int \dfrac{e^{k_2t}}{\left([A]_0k_1t+1\right)^2}dt$
Gorunen o ki cikmaz yola girdik..