$A$ matrisinin ozdegerleri birbirinden farkli reeal sayi oldugundan bu matris kosegenlestirilebilir..
Yapalim: Ozdegerleri $\lambda=0$ ve $8$ bunlara karsilik gelen ozdegerler sirasiyla $v=[-1,1]^T, v=[1,1]^T $
$A=PDP^{-1}$
$P=\left(
\begin{array}{cc}
-1 &1 \\
1 & 1 \\
\end{array}
\right)$
$A=\left(
\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
\end{array}
\right)\left(
\begin{array}{cc}
0 & 0 \\
0 &8 \\
\end{array}
\right)\left(
\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\end{array}
\right)$
$B=A^{\frac{1}{2}}=\left(
\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
\end{array}
\right)\left(
\begin{array}{cc}
0 & 0 \\
0 &8 \\
\end{array}
\right)^{\frac{1}{2}}\left(
\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\end{array}
\right)$
$=\left(
\begin{array}{cc}
-1 & 1 \\
1 & 1 \\
\end{array}
\right)\left(
\begin{array}{cc}
0 & 0 \\
0 &2\sqrt{2} \\
\end{array}
\right)\left(
\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
\end{array}
\right)$
$=\left(
\begin{array}{cc}
\sqrt{2} & \sqrt{2} \\
\sqrt{2} & \sqrt{2} \\
\end{array}
\right)$