$d_1:\frac{x-3}{2}=\frac{y}{3}=\frac{z-4}{5}$ doğrusunun doğrultu vektörü $\vec{v}=(2,3,5)$ ve
$d_2:\frac{x+1}{-1}=\frac{y-1}{2}=\frac{z}{4}$ doğrusunun doğrultu vektörü $\vec{u}=(-1,2,4)$ dir. Diğer taraftan $\vec{v}\times\vec{u}=2\vec{e_1}-13\vec{e_2}+7\vec{e_3}$ vektörü, bu iki vektörün belirttiği düzleme dik olduğundan bu vektörü aradığımız düzlemin normali olarak alabiliriz. O halde soru, $P(-1,0,2)$ noktasından geçen ve $\vec{v}\times\vec{u}$ vektörüne dik olan düzlemin denklemini bulmamıza dönüşür. Bu da geometrik yere ait bir nokta $A(x,y,z)$ olmak üzere $\vec{PA}=(x+1,y,z-2)$ vektörü ile $\vec{v}\times\vec{u}=2\vec{e_1}-13\vec{e_2}+7\vec{e_3}$ vektörünün skaler çarpımının sıfır olması demektir.
O halde istenen düzlemin denklemi :$ 2(x+1)-13y+7(z-2)=0\Rightarrow 2x-13y+7z-12=0$ olur.