Verilen doğrunun parametrik denklemi: $x=5k+2,\quad y=\frac{-k-3}{2},\quad z=7k+1$ dir. Öncelikle bu doğrudan geçen iki düzlem bulacagız,sonrada bu düzlemlerin kesiminden geçen düzlem demetini bulacagız. Bunun için doğru üzerinde olan iki nokta ile doğru dışında bir nokta seçerek bu üç noktadan geçen düzlemlerin denklemlerini bulmalıyız.
$k=0$ için $A(2,\frac{-3}{2},1)$ noktası ile $k=1$ için $B(7,-2,8)$ noktaları ile $(0,0,0)$ noktasından geçen düzlemin denklemi:$ ax+by+cz+d=0$ olsun.
Düzlem $(0,0,0)$ noktasından geçtiğinden $a.0+b.0+c.0+d=0\rightarrow d=0$ olur.
Düzlem $(2,-3/2,1)$ noktasından geçtiğinden $a.2-b.3/2+c.1=0\rightarrow 4a-3b+2c=0.......(1)$ olur.
Düzlem $(7,-2,8)$ noktasından geçtiğinden $a.7-b.2+c.8=0.....(2)$ olur. $(1),(2)$ den $a=10b/9, \quad c=\frac{-13b}{18}$ olur. Bunlar düzlem denkleminde yerine yazılırsa,ilk düzlem denklemi: $20x+18y-13z=0$ olur.
Benzer yolla;$A(2,\frac{-3}{2},1)$ noktası ile $B(7,-2,8)$ noktası ve $(1,0,0)$ noktasından geçen düzlemin denklemi:$ 5x+3y-3z-5=0$ olur. Bulduğumuz bu iki düzlemin kesişiminden geçen tüm düzlemlerin(Yani düzlem demetinin) denklemi: $\lambda\in R$ bir gerçel sayıolmak üzere,
$20x+18y-13z+\lambda(5x+3y-3z-5)\Rightarrow (20+5\lambda)x+(18+3\lambda)y+(-13-3\lambda)z-5\lambda d=0$ olacaktır.