Elimde $E: a(x_0 x_1 x_2) + b(x_0^3 + x_1^3 + x_2^3) = 0$ egrisi var. Gostermem gereken $E$'nin her noktada gicir (purussuz, smooth) olmasi icin gerek ve yeter kosulun $b\neq 0$ ve $a^3 + 27b^3 \neq0$ oldugu.
Gicir olmanin tanimi soyle yapiliyor: Bir $P$ noktasina gicir diyorum, eger $\frac{\partial}{\partial x_0} E(P), \frac{\partial}{\partial x_1}E(P), \frac{\partial}{\partial x_2}E(P) $ kismi turevlerinden en az biri sifirdan farkli ise.
Kismi turevleri aldim:
$$E_{x_0} = ax_1 x_2 + 3b x_0^2 \\ E_{x_1} = ax_0 x_2 + 3b x_1^2 \\E_{ x_2} = ax_0 x_1 + 3b x_2^2$$
Bunlari ayni anda sifira esitledigimde $b = 0$ ya da $a^3 + 27b^3 = 0$ bulmam lazim. Bir turlu cozemedim denklemi.
Not: $(a, b) \in \mathbb{P}^1$, yani ikisi ayni anda sifir olamazlar. Eger ise yarayacaksa, $P = (x_0, x_1, x_2)$ noktasi da $\mathbb{P}^2$ 'de. $(x_0, x_1, x_2) = (0 ,0 ,0)$ noktasi gecerli bir nokta degil yani.