Bir $n$ doğal sayısı için $d(n)$ sayısı $n$ sayısının asal çarpanları sayısı olsun. Mobius $\mu$ fonksiyonunu da şöyle tanımlayalım. eğer $n$ bir kare tarafından bölünüyorsa $$\mu(n)=0$$ olsun, eğer $n$ sayısının hiç kare böleni yoksa $$\mu(n)=(-1)^{d(n)}$$ olsun. Şu eşitlikleri ispatlayın: Eğer $n\neq 1$ ise $$\sum_{d|n}\mu(d)=0;$$ eğer $n=1$ ise $$\sum_{d|n}\mu(d)=1$$