$l \leq k \in \mathbb{N}$ olmak uzere $S_{l,k}$ toplamini $$S_{l,k} = \sum_{n = l}^k a_n$$ olarak tanimla. Aradigin toplam $$\lim_{k \to \infty} \lim_{l \to - \infty} S_{l,k}$$ ama bu limitin var olmasi ve $$\lim_{l \to - \infty}\lim_{k \to \infty} S_{l,k}$$ limitine esit olmasi gerekiyor.
Benim anladigim bu.
Ekleme: $\int_{-\infty}^{\infty} f(x) dx$ derken de bunun gibi iki tane limitten bahsediyoruz. Burak'in yaklasimi bu yuzden tehlikeli. $\lim_{n \to \infty} \int_{-n}^n f(x)dx$ limitini alirsan patlayabilirsin. Olmayan integralleri varmis zannedebilirsin.