Soyle bir tanim var: Eger her $t>0$ icin$\int_0^t\mathcal N(u)du=0$ ise bu $\mathcal N$ fonksiyonuna degersiz "null" fonksiyon deriz.
Tanimdan anlasilan sifir disinda da bir degersiz fonksiyon olmali, tabi olmayabilir de. Degersiz bir fonksiyon ornegi olarak delta fonksiyonunu alabiliriz, tek bir degerde $1$ diger yerlerde sifir olan fonksiyon. Daha genel olarak sadece sayilabilir tane sifir harici deger olan fonksiyonlari alabiliriz.
Tum degersiz fonksiyonlarin kumesi bu sekilde midir, bunlarin haricinde degersiz bir fonksiyon var midir? Eger varsa, hepsini bulabilir miyiz?