(Limitin tekliğini garantilemek için) $f,\ \mathbb{C}$ nin sınırsız bir $D$ alt kümesinde tanımlı (değerleri $\mathbb{C}$ de olan) bir fonksiyon olsun. $f:D\rightarrow \mathbb{C}\subset\mathbb{C}\cup\{\infty\}=\mathbb{S}^2$ (topolojik oarak $\mathbb{C}$ nin tek nokta kompaktlaması) olarak düşünebiliriz. $D\subseteq \mathbb{C}\subset\mathbb{S}^2$ (alt uzay topolojisi ile) olur. $D$ nin sınırsız oluşundan $\infty,\ D$ nin bir limit (yığılma) noktasıdır. Dolaysıyla topolojideki gibi limit tanımı yapılabilir (hedef uzayın Hausdorff olmasından ve sonsuz un $D$ nin lmit noktası oluşundan) limit (VARSA) tekdir.
Daha basit şekilde (analiz tipi tanım) (varsayımımızdan, $0,\ f(\frac1z)$ nin tanım kümesinin bir limit noktası olur.) :
-
$L\in\mathbb{C}$ için: Eğer her $\varepsilon>0$ için $|z|>R$ (ve $z\in D$) iken $|f(z)-L|<\varepsilon$ olacak şekilde ($\varepsilon$ a bağlı) bir $R>0$ gerçel sayısı bulunabiliyorsa (eşdeğer olarak $\displaystyle\lim_{z\to0}\textstyle f(\frac1z)=L$ ise)$\displaystyle\lim_{z\to\infty}f(z)=L$ yazarız.
-
Eğer her $P>0$ gerçel sayısı için $|z|>R$ (ve $z\in D$) iken $|f(z)|>P$ olacak şekilde ($P$ ye bağlı) bir $R>0$ gerçel sayısı bulunabiliyorsa (eşdeğer olarak $\displaystyle\lim_{z\to0}\textstyle\frac1{f(\frac1z)}=0$ ise) $\displaystyle\lim_{z\to\infty}f(z)=\infty$ yazarız.