Genel bilgi:
$a=q+1-\#E(\mathbb{F}_q)$ ise zeta fonksiyonumuz $$Z(E,t)=\frac{1-at+qt^2}{(1-t)(1-qt)}.$$ Eger $t^2-at+q$ polinomunun kokleri $\alpha,\beta$ ise $$\#E(\mathbb{F}_{q^r})=q^r+1-(\alpha^r+\beta^r)$$ olur.
Eger ornegimize geri donersek:
$\#E(\mathbb{F}_7)=8$ oldugundan $a=0$ olur.
$\alpha+\beta=0$ ve $\alpha\beta=7$'den $\alpha^2=\beta^2=-7$. O halde zeta fonksiyonumuz $$Z(E,t)=\frac{1+7t^2}{(1-t)(1-7t)}$$ olur ve $$\#E(\mathbb{F}_{7^4})=7^4+1-(49+49)=...$$ olur.
Genel cozumunu de cok rahat bir sekilde bulabiliriz. Kisacasi sadece $\mathbb{F}_7$ icin nokta sayisini buldugumuz egrinin bu yontemle uzerindeki nokta sayisi sorusunun cevabini tum $\mathbb{F}_{7^r}$'de bulabiliriz