$\left[ f\left( x\right) \right] ^{9\left( x\right) }$ fonksiyonun türevini alırken klasik yöntem ln almak ama şu yöntemle de soruları yapıyoruz ispatı nasıl yapılır acaba?
Yöntem: $\left[ f\left( x\right) \right] ^{9\left( x\right) }$ biraz $x^{n}$ birazda $a^{x}$ formatına benziyor o halde iki formamda da türev alıp toplarsam yani ;
$x^{n}$ için: $g\left( x\right) \left[ f\left( x\right) \right] ^{9\left( x\right) -1}f^{'}\left( x\right) $
$a^{x}$ için:$g^{'}\left( x\right) f\left( x\right) ^{9\left( x\right) }\ln \left( f\left( x\right) \right) f^{'}\left( x\right) $
Taraf tarafa toplarsak işlem tamam.Örneğin klasik olan $x^{x} $ fonksiyonunun türevini alalaım
önce $x^{n}$ için:$xx^{x-1} $
+
$a^{x}$ için:$x^{x}\ln x $
=$x^{x}\cdot \left( \ln x+1\right) $
bu şekilde ki $\left[ f\left( x\right) \right] ^{9\left( x\right) }$ bütün fonksiyonlarda geçerli bu peki bunu nasıl ispatlayabiliriz?