$22\equiv 2(mod10)$ değil mi? Şimdi adım adım $2$ 'nin kuvvetinin $mod10$ da kaç verdiğini bulmalıyız.
$$2=2(mod10)$$,$$2^2=4(mod10)$$, $$2^3=8(mod10)$$, $$2^4=6(mod10)$$, $$2^5=2(mod10)$$ dir. Görüldüğü gibi $2$'nin kuvveti $4$'e bölündüğünde verdiği kalana göre tekrarlıyor. Yani,
$$2=2^5=2^{9}=...=2(mod10)$$,$$2^2=2^6=2^{10}=...4(mod10)$$, $$2^3=2^7=2^{11}=8(mod10)$$, $$2^4=2^8=2^{12}=...=6(mod10)$$ dir.
$22\equiv2(mod4)$ olduğundan $$22^{22}\equiv 2^{22}\equiv4(mod10)$$ olacaktır. Diğerlerinide benzer yolla yapabilirsiniz. Ama daha kısa olarak Sayın @sercan hocan'nın çözümünü inceleyiniz.