$m(BAD)=m(ABD)=\alpha,m(DBC)=\theta$ olsun . O zaman $m(BCD)=\alpha+\theta$ olacaktır. Eğer $|BC|=a,|AB|=c $ denirse $CBD\sim CAB$ olduğundan $\frac{a}{c}=\frac{c-a}{a}\Rightarrow a^2+ca-c^2=0$ ve bu ikinci dereceden denklemi $a$' ya göre çözersek $a=\frac{-c\pm\sqrt{c^2+4c^2}}{2} \Rightarrow a=\frac{-c+c\sqrt{5}}{2}\Rightarrow \frac{a}{c}=\frac{-1+\sqrt{5}}{2}$ olur.