Galiba verdiğiniz $2x+2$ polinomu örneğinde bir yazım hatası olmuş. Sizin de belirttiğiniz, indirgenemez olma tanımına göre: $2x+2=2(x+1)$ ve ne 2 ne de $x+1$ ($\mathbb{Z}[x]$ de) tersinir olmadığından, $2x+2,\ \ \mathbb{Z}[x]$ de indirgenebilirdir.
$\mathbb{Q}[x]$ de çarpanlara ayrıldığında ise (biri sabit diğeri 1. derece olur) sabit çarpan 0 olmayacağı için tersinir olur, dolayısıyla, $2x+2,\ \mathbb{Q}[x]$ de indirgenemezdir.