$|GC|=k$ ise $|DG|=3k,|AE|=EB|=2k$ olur. $G$ ile $E$ noktalarını birleştirerek, $ABCD$ dikdörtgenini $GDAE$ ve $EBCG$ yamuklarının bileşimi olarak düşünelim. Eğer $A(ABCD)=S$ ise $A(GDAE)=\frac 58.S,\quad A(EBCG)=\frac 38.S$ olduğu açıktır. Diğer taraftan benzerlikten dolayı,$A(GFC)=S_1$ ise $A(FEB)=4S_1,\quad A(GEF)=A(CFB)=2S_1$ olur. Yani $A(GEBC)=9S_1$ olur. Benzer olarak $A(HAE)=4S_2$ ise $A(HGD)=9S_2,\quad A(DAH)=A(HEG)=6S_2$ olacaklardır. Böylece $A(AEGD)=25S_2$ dir.
$9S_1=\frac 38.S\Rightarrow S_1=\frac{S}{24}$ ve $25S_2=\frac58.S\Rightarrow S_2=\frac{S}{40}\Rightarrow 4S_2=\frac{S}{10}$ olur. Son olarak $\frac{S_1}{4S_2}=\frac{S/24}{S/10}=\frac{5}{12}$ olur. (İşlem hatası yapmadıysam tabii.)