$(\frac{2a}{b+c})^\frac{2}{3}+(\frac{2b}{a+c})^\frac{2}{3}+(\frac{2c}{b+c})^\frac{2}{3}\geq 3 \sqrt[3]{(\frac{2a}{b+c})^\frac{2}{3}(\frac{2b}{a+c})^\frac{2}{3}(\frac{2c}{b+c})^\frac{2}{3}}$ $$(b+c)(a+c)(b+c)\geq 8abc $$ bkz Şu soru ise istenen gösterilmiş olur.